

Introduction

This package is a pure python wrapper around libinput using ctypes.
It provides high-level object oriented api, taking care of reference counting,
memory management and the like automatically.

libinput is a library that handles input devices for display servers and
other applications that need to directly deal with input devices.
It provides device detection, device handling, input device event processing
and abstraction so minimize the amount of custom input code the user of
libinput need to provide the common set of functionality that users expect.
Input event processing includes scaling touch coordinates, generating pointer
events from touchpads, pointer acceleration, etc.

libinput does this by reading character files in /dev/input/, so to use
this package you need to run your code as root or to belong to input group.

	Installation
	Dependencies

	pip

	Source

	Usage
	Creating manual context

	Creating udev context

	Viewing device information

	Getting/filtering events

API

	Contexts
	LibInput

	LibInputPath

	LibInputUdev

	Events
	Event

	PointerEvent

	KeyboardEvent

	TouchEvent

	GestureEvent

	TabletToolEvent

	TabletPadEvent

	SwitchEvent

	DeviceNotifyEvent

	Devices and Seats
	Device

	Seat

	DeviceConfig

	Misc. objects
	TabletTool

	TabletPadModeGroup

	Constants and Enumerations

Contributors

	Thanks to Peter Hutterer [https://github.com/whot] for his advice
on designing a pythonic API.

Installation

Dependencies

This package depends on libinput version >= 1.8.2

On python versions < 3.6, aenum package is also needed.

On python versions < 3.4, selectors34 package is also needed.

On python versions < 3.3, monotonic package is also needed.

pip

python-libinput is distributed as a source package.
To install, simply run:

pip install python-libinput

Source

Just run

python setup.py install

from the source directory.

Usage

Creating manual context

>>>from libinput import LibInput, constant

>>> li = LibInput(context_type=constant.ContextType.PATH)
>>> device = li.path_add_device('/dev/input/event7')
>>> li.path_remove_device(device)

Creating udev context

udev context adds/removes devices from a given seat as they’re physically
added/removed. LibInputUdev.assign_seat() should only be called once
per context.

>>> li = LibInput(context_type=constant.ContextType.UDEV)
>>> li.assign_seat('seat0')

Viewing device information

>>> device.name
'SIGMACHIP Usb Mouse'
>>> device.has_capability(constant.DeviceCapability.POINTER)
True
>>> device.pointer_has_button(0x110) # BTN_LEFT
True

Getting/filtering events

>>> for event in li.get_event():
>>> if event.type == constant.EventType.POINTER_MOTION:
>>> print(event.delta)
(15, 76)
>>> ...

Contexts

LibInput

	
class libinput.LibInput(context_type=<ContextType.PATH: 1>, grab=False, debug=False)

	A base/factory class for libinput context.

Context is used to manage devices and get events.

	
__init__(context_type=<ContextType.PATH: 1>, grab=False, debug=False)

	Initialize context.

	Parameters

	
	context_type (ContextType) – If
UDEV devices are
added/removed from udev seat. If
PATH devices have to be
added/removed manually.

	grab (bool [https://docs.python.org/3/library/functions.html#bool]) – If true get exclusive access to device(s).

Note

Grabbing an already grabbed device raises OSError [https://docs.python.org/3/library/exceptions.html#OSError]

	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – If false, only errors are printed.

	
log_handler

	Callable that handles error/info/debug messages.

	Parameters

	
	priority (LogPriority) – Message priority.

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – The message.

Default handler prints messages to stdout.

	
suspend()

	Suspend monitoring for new devices and close existing devices.

This all but terminates libinput but does keep the context valid to be
resumed with resume().

	
resume()

	Resume a suspended libinput context.

This re-enables device monitoring and adds existing devices.

Warning

Resuming udev context before assigning seat causes segfault.

	
get_event(timeout=None)

	Yield events from the internal libinput’s queue.

Yields device events that are subclasses of
Event.

If timeout is positive number, the generator will only block for
timeout seconds when there are no events. If timeout is
None [https://docs.python.org/3/library/constants.html#None] (default) the generator will block indefinitely.

	Parameters

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Seconds to block when there are no events.

	Yields

	Event – A generic event.

	
next_event_type()

	Return the type of the next event in the internal queue.

This method does not pop the event off the queue and the next call
to get_event() returns that event.

	Returns

	The event type of the next available
event or NONE if no event
is available.

	Return type

	EventType

LibInputPath

	
class libinput.LibInputPath(*args, **kwargs)

	libinput path context.

For a context of this type, devices have to be added/removed manually with
add_device() and remove_device() respectively.

Note

Do not instanciate this class directly, instead call LibInput
with context_type PATH.

	
add_device(path)

	Add a device to a libinput context.

If successful, the device will be added to the internal list and
re-opened on resume(). The device can be
removed with remove_device().
If the device was successfully initialized, it is returned.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to an input device.

	Returns

	A device object or None [https://docs.python.org/3/library/constants.html#None].

	Return type

	Device

	
remove_device(device)

	Remove a device from a libinput context.

Events already processed from this input device are kept in the queue,
the DEVICE_REMOVED event marks
the end of events for this device.

If no matching device exists, this method does nothing.

	Parameters

	Device (Device) – A previously added device.

LibInputUdev

	
class libinput.LibInputUdev(*args, **kwargs)

	libinput udev context.

For a context of this type, devices are added/removed automatically from
the assigned seat.

Note

Do not instanciate this class directly, instead call LibInput
with context_type UDEV.

	
assign_seat(seat)

	Assign a seat to this libinput context.

New devices or the removal of existing devices will appear as events
when iterating over get_event().

assign_seat() succeeds even if no input devices are
currently available on this seat, or if devices are available but fail
to open. Devices that do not have the minimum capabilities to be
recognized as pointer, keyboard or touch device are ignored. Such
devices and those that failed to open are ignored until the next call
to resume().

Warning

This method may only be called once per context.

	Parameters

	seat (str [https://docs.python.org/3/library/stdtypes.html#str]) – A seat identifier.

Events

Event

	
class libinput.event.Event(hevent, libinput)

	Base class for device events.

	
type

	An enum describing event type.

	Returns

	Event type.

	Return type

	EventType

	
device

	The device associated with this event.

For device added/removed events this is the device added or removed.
For all other device events, this is the device that generated the
event.

	Returns

	Device object.

	Return type

	Device

PointerEvent

	
class libinput.event.PointerEvent(*args)

	A pointer event.

An event representing relative or absolute pointer movement, a button
press/release or scroll axis events.

	
time

	
Note

Timestamps may not always increase. See Event timestamps [https://wayland.freedesktop.org/libinput/doc/latest/timestamps.html] for
details.

	Returns

	The event time for this event in microseconds.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
delta

	The delta between the last event and the current event.

For pointer events that are not of type
POINTER_MOTION, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

If a device employs pointer acceleration, the delta
returned by this method is the accelerated delta.

Relative motion deltas are to be interpreted as pixel movement of a
standardized mouse. See Normalization of relative motion [https://wayland.freedesktop.org/libinput/doc/1.8.2/motion_normalization.html]
for more details.

	Returns

	The relative (x, y) movement since the last event.

	Return type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
delta_unaccelerated

	The relative delta of the unaccelerated motion vector of the
current event.

For pointer events that are not of type
POINTER_MOTION, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

Relative unaccelerated motion deltas are raw device coordinates. Note
that these coordinates are subject to the device’s native resolution.
Touchpad coordinates represent raw device coordinates in the
(X, Y) resolution of the touchpad.
See Normalization of relative motion [https://wayland.freedesktop.org/libinput/doc/1.8.2/motion_normalization.html] for more details.

Any rotation applied to the device also applies to unaccelerated motion
(see config_rotation_set_angle()).

	Returns

	The unaccelerated relative (x, y) movement since
the last event.

	Return type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
absolute_coords

	The current absolute coordinates of the pointer event,
in mm from the top left corner of the device.

To get the corresponding output screen coordinate, use
transform_absolute_coords().

For pointer events that are not of type
POINTER_MOTION_ABSOLUTE,
this property raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The current absolute coordinates.

	Return type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
transform_absolute_coords(width, height)

	Return the current absolute coordinates of the pointer event,
transformed to screen coordinates.

For pointer events that are not of type
POINTER_MOTION_ABSOLUTE,
this method raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – The current output screen width.

	height (int [https://docs.python.org/3/library/functions.html#int]) – The current output screen height.

	Returns

	The current absolute (x, y) coordinates transformed
to a screen coordinates.

	Return type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

	
button

	The button that triggered this event.

For pointer events that are not of type
POINTER_BUTTON,
this property raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The button triggering this event.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
button_state

	The button state that triggered this event.

For pointer events that are not of type
POINTER_BUTTON, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The button state triggering this
event.

	Return type

	ButtonState

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
seat_button_count

	The total number of buttons pressed on all devices on the
associated seat after the event was triggered.

For pointer events that are not of type
POINTER_BUTTON, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The seat wide pressed button count for the key of this event.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
has_axis(axis)

	Check if the event has a valid value for the given axis.

If this method returns True for an axis and get_axis_value()
returns a value of 0, the event is a scroll stop event.

For pointer events that are not of type
POINTER_AXIS, this method raises
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	axis (PointerAxis) – The axis to check.

	Returns

	True if this event contains a value for this axis.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
get_axis_value(axis)

	Return the axis value of the given axis.

The interpretation of the value depends on the axis. For the two
scrolling axes SCROLL_VERTICAL
and SCROLL_HORIZONTAL, the value
of the event is in relative scroll units, with the positive direction
being down or right, respectively. For the interpretation of the value,
see axis_source.

If has_axis() returns False for an axis, this method returns 0
for that axis.

For pointer events that are not of type
POINTER_AXIS, this method raises
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	axis (PointerAxis) – The axis who’s value to get.

	Returns

	The axis value of this event.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
axis_source

	The source for a given axis event.

Axis events (scroll events) can be caused by a hardware item such as
a scroll wheel or emulated from other input sources, such as two-finger
or edge scrolling on a touchpad.

If the source is FINGER,
libinput guarantees that a scroll sequence is terminated with a scroll
value of 0. A caller may use this information to decide on whether
kinetic scrolling should be triggered on this scroll sequence. The
coordinate system is identical to the cursor movement, i.e. a scroll
value of 1 represents the equivalent relative motion of 1.
If the source is WHEEL,
no terminating event is guaranteed (though it may happen). Scrolling
is in discrete steps, the value is the angle the wheel moved in
degrees. The default is 15 degrees per wheel click, but some mice may
have differently grained wheels. It is up to the caller how to
interpret such different step sizes.

If the source is CONTINUOUS,
no terminating event is guaranteed (though it may happen). The
coordinate system is identical to the cursor movement, i.e. a scroll
value of 1 represents the equivalent relative motion of 1.
If the source is WHEEL_TILT,
no terminating event is guaranteed (though it may happen). Scrolling
is in discrete steps and there is no physical equivalent for the value
returned here. For backwards compatibility, the value of this
property is identical to a single mouse wheel rotation by this device
(see the documentation for
WHEEL above). Callers
should not use this value but instead exclusively refer to the value
returned by get_axis_value_discrete().

For pointer events that are not of type
POINTER_AXIS, this property raises
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The source for this axis
event.

	Return type

	PointerAxisSource

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
get_axis_value_discrete(axis)

	Return the axis value in discrete steps for a given axis event.

How a value translates into a discrete step depends on the source.
If the source is WHEEL,
the discrete value correspond to the number of physical mouse wheel
clicks.

If the source is CONTINUOUS
or FINGER, the discrete
value is always 0.

	Parameters

	axis (PointerAxis) – The axis who’s value to get.

	Returns

	The discrete value for the given event.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

KeyboardEvent

	
class libinput.event.KeyboardEvent(*args)

	A keyboard event representing a key press/release.

	
time

	
Note

Timestamps may not always increase. See Event timestamps [https://wayland.freedesktop.org/libinput/doc/latest/timestamps.html] for
details.

	Returns

	The event time for this event in microseconds.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
key

	The keycode that triggered this event.

	Returns

	The keycode that triggered this key event.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
key_state

	The logical state of the key.

	Returns

	The state change of the key.

	Return type

	KeyState

	
seat_key_count

	The total number of keys pressed on all devices on the
associated seat after the event was triggered.

	Returns

	The seat wide pressed key count for the key of this event.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

TouchEvent

	
class libinput.event.TouchEvent(*args)

	Touch event representing a touch down, move or up, as well as
a touch cancel and touch frame events.

	
time

	
Note

Timestamps may not always increase. See Event timestamps [https://wayland.freedesktop.org/libinput/doc/latest/timestamps.html] for
details.

	Returns

	The event time for this event in microseconds.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
slot

	The slot of this touch event.

See the kernel’s multitouch protocol B documentation for more
information.

If the touch event has no assigned slot, for example if it is from
a single touch device, this property returns -1.

For events not of type TOUCH_DOWN,
TOUCH_UP,
TOUCH_MOTION or
TOUCH_CANCEL, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The slot of this touch event.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
seat_slot

	The seat slot of the touch event.

A seat slot is a non-negative seat wide unique identifier of an active
touch point.

Events from single touch devices will be represented as one individual
touch point per device.

For events not of type TOUCH_DOWN,
TOUCH_UP,
TOUCH_MOTION or
TOUCH_CANCEL, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The seat slot of the touch event.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
coords

	The current absolute coordinates of the touch event,
in mm from the top left corner of the device.

To get the corresponding output screen coordinates, use
transform_coords().

For events not of type TOUCH_DOWN,
TOUCH_MOTION, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The current absolute (x, y) coordinates.

	Return type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
transform_coords(width, height)

	Return the current absolute coordinates of the touch event,
transformed to screen coordinates.

For events not of type TOUCH_DOWN,
TOUCH_MOTION, this method
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – The current output screen width.

	height (int [https://docs.python.org/3/library/functions.html#int]) – The current output screen height.

	Returns

	The current absolute (x, y) coordinates transformed
to screen coordinates.

	Return type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

GestureEvent

	
class libinput.event.GestureEvent(*args)

	A gesture event representing gesture on a touchpad.

Gesture sequences always start with a
GESTURE_FOO_START event. All following
gesture events will be of the
GESTURE_FOO_UPDATE type until
a GESTURE_FOO_END is generated which
signals the end of the gesture.

See Gestures [https://wayland.freedesktop.org/libinput/doc/latest/gestures.html] for more information on gesture handling.

	
time

	
Note

Timestamps may not always increase. See Event timestamps [https://wayland.freedesktop.org/libinput/doc/latest/timestamps.html] for
details.

	Returns

	The event time for this event in microseconds.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
finger_count

	The number of fingers used for a gesture.

This can be used e.g. to differentiate between 3 or 4 finger swipes.
This property is valid for all gesture events and the returned
finger count value will not change during a sequence.

	Returns

	The number of fingers used for a gesture.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
cancelled

	Return if the gesture ended normally, or if it was cancelled.

For gesture events that are not of type
GESTURE_SWIPE_END or
GESTURE_PINCH_END, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	True [https://docs.python.org/3/library/constants.html#True] indicating that the gesture was cancelled.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
delta

	The delta between the last event and the current event.

For gesture events that are not of type
GESTURE_SWIPE_UPDATE or
GESTURE_PINCH_UPDATE, this
property raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

If a device employs pointer acceleration, the delta returned by this
property is the accelerated delta.

Relative motion deltas are normalized to represent those of a device
with 1000dpi resolution. See Normalization of relative motion [https://wayland.freedesktop.org/libinput/doc/1.8.2/motion_normalization.html]
for more details.

	Returns

	The relative (x, y) movement since the last event.

	Return type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

	
delta_unaccelerated

	The relative delta of the unaccelerated motion vector of
the current event.

For gesture events that are not of type
GESTURE_SWIPE_UPDATE or
GESTURE_PINCH_UPDATE, this
property raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

Relative unaccelerated motion deltas are normalized to represent those
of a device with 1000dpi resolution. See
Normalization of relative motion [https://wayland.freedesktop.org/libinput/doc/1.8.2/motion_normalization.html] for more details.
Note that unaccelerated events are not equivalent to ‘raw’ events
as read from the device.

Any rotation applied to the device also applies to gesture motion
(see config_rotation_set_angle()).

	Returns

	The unaccelerated relative (x, y) movement since
the last event.

	Return type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

	
scale

	The absolute scale of a pinch gesture, the scale is
the division of the current distance between the fingers and
the distance at the start of the gesture.

The scale begins at 1.0, and if e.g. the fingers moved together by
50% then the scale will become 0.5, if they move twice as far apart
as initially the scale becomes 2.0, etc.

For gesture events that are of type
GESTURE_PINCH_BEGIN, this property
returns 1.0.

For gesture events that are of type
GESTURE_PINCH_END, this property
returns the scale value of the most recent
GESTURE_PINCH_UPDATE event
(if any) or 1.0 otherwise.

For all other events this property raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The absolute scale of a pinch gesture.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
angle_delta

	The angle delta in degrees between the last and the current
GESTURE_PINCH_UPDATE event.

For gesture events that are not of type
GESTURE_PINCH_UPDATE, this
property raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

The angle delta is defined as the change in angle of the line formed
by the 2 fingers of a pinch gesture. Clockwise rotation is represented
by a positive delta, counter-clockwise by a negative delta. If e.g.
the fingers are on the 12 and 6 location of a clock face plate and
they move to the 1 resp. 7 location in a single event then the angle
delta is 30 degrees.

If more than two fingers are present, the angle represents
the rotation around the center of gravity. The calculation of
the center of gravity is implementation-dependent.

	Returns

	The angle delta since the last event.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

TabletToolEvent

	
class libinput.event.TabletToolEvent(*args)

	Tablet tool event representing an axis update, button press,
or tool update.

Valid event types for this event are
TABLET_TOOL_AXIS,
TABLET_TOOL_PROXIMITY,
TABLET_TOOL_TIP
and TABLET_TOOL_BUTTON.

	
coords_have_changed

	Check if the (x, y) axes were updated in this event.

For events that are not of type
TABLET_TOOL_AXIS,
TABLET_TOOL_TIP,
or TABLET_TOOL_PROXIMITY,
this property is False [https://docs.python.org/3/library/constants.html#False].

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the axes were updated or False [https://docs.python.org/3/library/constants.html#False]
otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
pressure_has_changed

	Check if the pressure axis was updated in this event.

For events that are not of type
TABLET_TOOL_AXIS,
TABLET_TOOL_TIP,
or TABLET_TOOL_PROXIMITY, this
property is False [https://docs.python.org/3/library/constants.html#False].

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the axis was updated or False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
distance_has_changed

	Check if the distance axis was updated in this event.

For events that are not of type
TABLET_TOOL_AXIS,
TABLET_TOOL_TIP,
or TABLET_TOOL_PROXIMITY, this
property is False [https://docs.python.org/3/library/constants.html#False]. For tablet tool events of type
TABLET_TOOL_PROXIMITY, this
property is always True [https://docs.python.org/3/library/constants.html#True].

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the axis was updated or False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
tilt_has_changed

	Check if the tilt axes were updated in this event.

For events that are not of type
TABLET_TOOL_AXIS,
TABLET_TOOL_TIP,
or TABLET_TOOL_PROXIMITY, this
property is False [https://docs.python.org/3/library/constants.html#False].

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the axes were updated or False [https://docs.python.org/3/library/constants.html#False]
otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
rotation_has_changed

	Check if the z-rotation axis was updated in this event.

For events that are not of type
TABLET_TOOL_AXIS,
TABLET_TOOL_TIP,
or TABLET_TOOL_PROXIMITY, this
property is False [https://docs.python.org/3/library/constants.html#False].

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the axis was updated or False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
slider_has_changed

	Check if the slider axis was updated in this event.

For events that are not of type
TABLET_TOOL_AXIS,
TABLET_TOOL_TIP,
or TABLET_TOOL_PROXIMITY, this
property is False [https://docs.python.org/3/library/constants.html#False].

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the axis was updated or False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
wheel_has_changed

	Check if the wheel axis was updated in this event.

For events that are not of type
TABLET_TOOL_AXIS,
TABLET_TOOL_TIP,
or TABLET_TOOL_PROXIMITY, this
property is False [https://docs.python.org/3/library/constants.html#False].

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the axis was updated or False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
coords

	The (X, Y) coordinates of the tablet tool, in mm from
the top left corner of the tablet in its current logical orientation.

Use transform_coords() for transforming the axes values into
a different coordinate space.

Note

On some devices, returned value may be negative or larger than
the width of the device. See Out-of-bounds motion events [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-bounds]
for more details.

	Returns

	The current values of the the axes.

	Return type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

	
delta

	The delta between the last event and the current event.

If the tool employs pointer acceleration, the delta contained in this
property is the accelerated delta.

This value is in screen coordinate space, the delta is to be
interpreted like the value of PointerEvent.delta.
See Relative motion for tablet tools [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-relative-motion] for more details.

	Returns

	The relative (x, y) movement since the last event.

	Return type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

	
pressure

	The current pressure being applied on the tool in use,
normalized to the range [0, 1].

If this axis does not exist on the current tool, this property is 0.

	Returns

	The current value of the the axis.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
distance

	The current distance from the tablet’s sensor,
normalized to the range [0, 1].

If this axis does not exist on the current tool, this property is 0.

	Returns

	The current value of the the axis.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
tilt_axes

	The current tilt along the (X, Y) axes of the tablet’s
current logical orientation, in degrees off the tablet’s Z axis.

That is, if the tool is perfectly orthogonal to the tablet,
the tilt angle is 0. When the top tilts towards the logical top/left
of the tablet, the x/y tilt angles are negative, if the top tilts
towards the logical bottom/right of the tablet, the x/y tilt angles
are positive.

If these axes do not exist on the current tool, this property returns
(0, 0).

	Returns

	The current value of the axes in degrees.

	Return type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

	
rotation

	The current Z rotation of the tool in degrees, clockwise
from the tool’s logical neutral position.

For tools of type MOUSE
and LENS the logical
neutral position is pointing to the current logical north
of the tablet. For tools of type
BRUSH, the logical
neutral position is with the buttons pointing up.

If this axis does not exist on the current tool, this property is 0.

	Returns

	The current value of the the axis.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
slider_position

	The current position of the slider on the tool,
normalized to the range [-1, 1].

The logical zero is the neutral position of the slider, or
the logical center of the axis. This axis is available on e.g.
the Wacom Airbrush.

If this axis does not exist on the current tool, this property is 0.

	Returns

	The current value of the the axis.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
wheel_delta

	The delta for the wheel in degrees.

	Returns

	The delta of the wheel, in degrees, compared to
the last event.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
wheel_delta_discrete

	The delta for the wheel in discrete steps (e.g. wheel clicks).

	Returns

	The delta of the wheel, in discrete steps, compared to
the last event.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
transform_coords(width, height)

	Return the current absolute (x, y) coordinates of
the tablet tool event, transformed to screen coordinates.

Note

On some devices, returned value may be negative or larger than
the width of the device. See Out-of-bounds motion events [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-bounds]
for more details.

	Parameters

	
	width (int [https://docs.python.org/3/library/functions.html#int]) – The current output screen width.

	height (int [https://docs.python.org/3/library/functions.html#int]) – The current output screen height.

	Returns

	The current absolute (x, y) coordinates transformed
to screen coordinates.

	Return type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

	
tool

	The tool that was in use during this event.

If the caller keeps a reference to a tool, the tool object will
compare equal to the previously obtained tool object.

Note

Physical tool tracking requires hardware support. If unavailable,
libinput creates one tool per type per tablet. See
Tracking unique tools [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-serial-numbers] for more details.

	Returns

	The new tool triggering this event.

	Return type

	TabletTool

	
proximity_state

	The new proximity state of a tool from a proximity event.

Used to check whether or not a tool came in or out of proximity during
an event of type
TABLET_TOOL_PROXIMITY.

See Handling of proximity events [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-fake-proximity] for
recommendations on proximity handling.

	Returns

	The new proximity
state of the tool from the event.

	Return type

	TabletToolProximityState

	
tip_state

	The new tip state of a tool from a tip event.

Used to check whether or not a tool came in contact with
the tablet surface or left contact with the tablet surface during
an event of type TABLET_TOOL_TIP.

	Returns

	The new tip state of
the tool from the event.

	Return type

	TabletToolTipState

	
button

	The button that triggered this event.

For events that are not of type
TABLET_TOOL_BUTTON, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The button triggering this event.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
button_state

	The button state of the event.

For events that are not of type
TABLET_TOOL_BUTTON, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The button state triggering
this event.

	Return type

	ButtonState

	
seat_button_count

	The total number of buttons pressed on all devices on
the associated seat after the the event was triggered.

For events that are not of type
TABLET_TOOL_BUTTON, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The seat wide pressed button count for the key of this event.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
time

	
Note

Timestamps may not always increase. See Event timestamps [https://wayland.freedesktop.org/libinput/doc/latest/timestamps.html] for
details.

	Returns

	The event time for this event in microseconds.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

TabletPadEvent

	
class libinput.event.TabletPadEvent(*args)

	Tablet pad event representing a button press or ring/strip update
on the tablet pad itself.

Valid event types for this event are
TABLET_PAD_BUTTON,
TABLET_PAD_RING
and TABLET_PAD_STRIP.

	
ring_position

	The current position of the ring, in degrees
counterclockwise from the northern-most point of the ring in
the tablet’s current logical orientation.

If the source is
FINGER,
libinput sends a terminating event with a ring value of -1 when
the finger is lifted from the ring. A caller may use this information
to e.g. determine if kinetic scrolling should be triggered.

For events not of type
TABLET_PAD_RING, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The current value of the the axis. -1 if the finger was
lifted.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
ring_number

	The number of the ring that has changed state,
with 0 being the first ring.

On tablets with only one ring, this method always returns 0.

For events not of type
TABLET_PAD_RING, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The index of the ring that changed state.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
ring_source

	The source of the interaction with the ring.

If the source is
FINGER,
libinput sends a ring position value of -1 to terminate
the current interaction.

For events not of type
TABLET_PAD_RING, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The source of the ring
interaction.

	Return type

	TabletPadRingAxisSource

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
strip_position

	The current position of the strip, normalized to
the range [0, 1], with 0 being the top/left-most point in the tablet’s
current logical orientation.

If the source is
FINGER,
libinput sends a terminating event with a value of -1 when the finger
is lifted from the strip. A caller may use this information to e.g.
determine if kinetic scrolling should be triggered.

For events not of type
TABLET_PAD_STRIP, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The current value of the the axis. -1 if the finger was
lifted.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
strip_number

	The number of the strip that has changed state,
with 0 being the first strip.

On tablets with only one strip, this method always returns 0.

For events not of type
TABLET_PAD_STRIP, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The index of the strip that changed state.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
strip_source

	The source of the interaction with the strip.

If the source is
FINGER, libinput
sends a strip position value of -1 to terminate the current interaction.

For events not of type
TABLET_PAD_STRIP, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The source of
the strip interaction.

	Return type

	TabletPadStripAxisSource

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
button_number

	The button number that triggered this event, starting at 0.

For events that are not of type
TABLET_PAD_BUTTON,
this property raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

Note that the number returned is a generic sequential button number
and not a semantic button code as defined in linux/input.h.
See Tablet pad button numbers [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-pad-buttons] for more details.

	Returns

	The button triggering this event.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
button_state

	The button state of the event.

For events not of type
TABLET_PAD_BUTTON, this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The button state triggering
this event.

	Return type

	ButtonState

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
mode

	The mode the button, ring, or strip that triggered
this event is in, at the time of the event.

The mode is a virtual grouping of functionality, usually based on
some visual feedback like LEDs on the pad. See Tablet pad modes [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-pad-modes]
for details. Mode indices start at 0, a device that does not support
modes always returns 0.

Mode switching is controlled by libinput and more than one mode
may exist on the tablet. This method returns the mode that
this event’s button, ring or strip is logically in. If the button
is a mode toggle button and the button event caused a new mode to
be toggled, the mode returned is the new mode the button is in.

Note that the returned mode is the mode valid as of the time of
the event. The returned mode may thus be different to the mode
returned by mode.
See mode for details.

	Returns

	The 0-indexed mode of this button, ring or strip at the time
of the event.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
mode_group

	The mode group that the button, ring, or strip that
triggered this event is considered in.

The mode is a virtual grouping of functionality, usually based on some
visual feedback like LEDs on the pad. See Tablet pad modes [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-pad-modes]
for details.

	Returns

	The mode group of the button,
ring or strip that caused this event.

	Return type

	TabletPadModeGroup

	
time

	
Note

Timestamps may not always increase. See Event timestamps [https://wayland.freedesktop.org/libinput/doc/latest/timestamps.html] for
details.

	Returns

	The event time for this event in microseconds.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

SwitchEvent

	
class libinput.event.SwitchEvent(*args)

	A switch event representing a changed state in a switch.

	
switch

	The switch that triggered this event.

	Returns

	The switch triggering this event.

	Return type

	Switch

	
switch_state

	The switch state that triggered this event.

	Returns

	The switch state triggering this
event.

	Return type

	SwitchState

	
time

	
Note

Timestamps may not always increase. See Event timestamps [https://wayland.freedesktop.org/libinput/doc/latest/timestamps.html] for
details.

	Returns

	The event time for this event in microseconds.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

DeviceNotifyEvent

	
class libinput.event.DeviceNotifyEvent(*args)

	An event notifying the caller of a device being added or removed.

Devices and Seats

Device

	
class libinput.device.Device(*args)

	An input device.

	
sysname

	The system name of the device.

To get the descriptive device name, use name.

	Returns

	System name of the device.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
name

	The descriptive device name as advertised by the kernel
and/or the hardware itself.

To get the sysname for this device, use sysname.

	Returns

	The device name.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
id_product

	The product ID for this device.

	Returns

	The product ID of this device.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
id_vendor

	The vendor ID for this device.

	Returns

	The vendor ID of this device.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
seat

	The seat associated with this input device, see Seats [https://wayland.freedesktop.org/libinput/doc/latest/seats.html]
for details.

A seat can be uniquely identified by the physical and logical seat
name. As long as a reference to a seat is kept, it will compare equal
to another seat object with the same physical/logical name pair.

	Returns

	The seat this input device belongs to.

	Return type

	Seat

	
set_seat_logical_name(seat)

	Change the logical seat associated with this device by removing
the device and adding it to the new seat.

This command is identical to physically unplugging the device, then
re-plugging it as a member of the new seat. libinput will generate
a DEVICE_REMOVED event and this
Device is considered removed from the context; it will not
generate further events.
A DEVICE_ADDED event is
generated with a new Device. It is the caller’s
responsibility to update references to the new device accordingly.

If the logical seat name already exists in the device’s physical seat,
the device is added to this seat. Otherwise, a new seat is created.

Note

This change applies to this device until removal or
suspend(), whichever happens earlier.

	Parameters

	seat (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new logical seat name.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
udev_device

	A udev handle to the device that is this libinput device,
if any.

The returned handle has a refcount of at least 1, the caller must call
udev_device_unref() once to release the associated resources.
See the libudev documentation for details.

Some devices may not have a udev device, or the udev device may be
unobtainable. This function returns None [https://docs.python.org/3/library/constants.html#None] if no udev device
was available.

Calling this function multiple times for the same device may not
return the same udev handle each time.

	Returns

	A udev handle to the device with a refcount of >= 1 or
None [https://docs.python.org/3/library/constants.html#None] if this device is not represented by a udev device.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
led_update(leds)

	Update the LEDs on the device, if any.

If the device does not have LEDs, or does not have one or more of
the LEDs given in the mask, this method does nothing.

	Parameters

	leds (Led) – A mask of the LEDs to set, or unset.

	
has_capability(capability)

	Check if the given device has the specified capability.

	Parameters

	
	capability (DeviceCapability) – A capability

	check for. (to) –

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the given device has the capability or
False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
size

	The physical size of a device in mm, where meaningful.

This property is only valid on devices with the required data, i.e.
tablets, touchpads and touchscreens. For other devices this property
raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	(Width, Height) in mm.

	Return type

	(float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float])

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
pointer_has_button(button)

	Check if a POINTER
device has a given button.

	Parameters

	button (int [https://docs.python.org/3/library/functions.html#int]) – Button to check for, see input.h for button
definitions.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the device has this button, False [https://docs.python.org/3/library/constants.html#False] if
it does not.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
keyboard_has_key(key)

	Check if a KEYBOARD
device has a given key.

	Parameters

	key (int [https://docs.python.org/3/library/functions.html#int]) – Key to check for, see input.h for key definitions.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the device has this key, False [https://docs.python.org/3/library/constants.html#False] if
it does not.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
tablet_pad_get_num_buttons()

	Return the number of buttons on a device with
the TABLET_PAD capability.

Buttons on a pad device are numbered sequentially, see
Tablet pad button numbers [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-pad-buttons] for details.

	Returns

	The number of buttons supported by the device.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
tablet_pad_get_num_rings()

	Return the number of rings a device with
the TABLET_PAD
capability provides.

	Returns

	The number of rings or 0 if the device has no rings.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
tablet_pad_get_num_strips()

	Return the number of strips a device with
the TABLET_PAD
capability provides.

	Returns

	The number of strips or 0 if the device has no strips.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
tablet_pad_get_num_mode_groups()

	Most devices only provide a single mode group, however devices
such as the Wacom Cintiq 22HD provide two mode groups.

If multiple mode groups are available, a caller should use
has_button(),
has_ring()
and has_strip() to associate
each button, ring and strip with the correct mode group.

	Returns

	The number of mode groups available on this device.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
tablet_pad_get_mode_group(group)

	While a reference is kept by the caller, the returned mode group
will compare equal with mode group returned by each subsequent call of
this method with the same index and mode group returned from
mode_group, provided
the event was generated by this mode group.

	Parameters

	group (int [https://docs.python.org/3/library/functions.html#int]) – A mode group index.

	Returns

	The mode group with the given
index or None [https://docs.python.org/3/library/constants.html#None] if an invalid index is given.

	Return type

	TabletPadModeGroup

	
config

	Device configuration.

	Returns

	An object providing device configuration methods.

	Return type

	DeviceConfig

Seat

	
class libinput.device.Seat(hseat, libinput)

	A seat has two identifiers, the physical name and the logical name.

A device is always assigned to exactly one seat. It may change to
a different logical seat but it cannot change physical seats.
See Seats [https://wayland.freedesktop.org/libinput/doc/latest/seats.html] for details.

Two instances of Seat compare equal if they refer to the same
physical/logical seat.

	
physical_name

	The physical name of the seat.

For libinput contexts created from udev, this is always the same value
as passed into assign_seat() and all
seats from that context will have the same physical name.

The physical name of the seat is one that is usually set by the system
or lower levels of the stack. In most cases, this is the base filter
for devices - devices assigned to seats outside the current seat will
not be available to the caller.

	Returns

	The physical name of this seat.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
logical_name

	The logical name of the seat.

This is an identifier to group sets of devices within the compositor.

	Returns

	The logical name of this seat.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

DeviceConfig

	
class libinput.device.DeviceConfig(*args)

	A configuration object.

	
tap

	Tapping-related configuration methods.

	Returns

	

	Return type

	DeviceConfigTap

	
calibration

	Calibration matrix configuration methods.

	Returns

	

	Return type

	DeviceConfigCalibration

	
send_events

	Event sending configuration methods.

	Returns

	

	Return type

	DeviceConfigSendEvents

	
accel

	Pointer acceleration configuration methods.

	Returns

	

	Return type

	DeviceConfigAccel

	
scroll

	Scrolling configuration methods.

	Returns

	

	Return type

	DeviceConfigScroll

	
left_handed

	Left-handed usage configuration methods.

	Returns

	

	Return type

	DeviceConfigLeftHanded

	
click

	Click method configuration methods.

	Returns

	

	Return type

	DeviceConfigClick

	
middle_emulation

	Middle mouse button emulation configuration methods.

	Returns

	

	Return type

	DeviceConfigMiddleEmulation

	
dwt

	Disable-while-typing configuration methods.

	Returns

	

	Return type

	DeviceConfigDwt

	
rotation

	Rotation configuration methods.

	Returns

	

	Return type

	DeviceConfigRotation

	
class libinput.device.DeviceConfigTap(*args)

	Tapping-related configuration methods.

	
finger_count

	Check if the device supports tap-to-click and how many fingers can
be used for tapping.

See set_enabled() for more information.

	Returns

	The number of fingers that can generate a tap event, or 0 if
the device does not support tapping.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
set_enabled(state)

	Enable or disable tap-to-click on this device, with
a default mapping of 1, 2, 3 finger tap mapping to left, right, middle
click, respectively.

Tapping is limited by the number of simultaneous touches supported by
the device, see finger_count.

	Parameters

	state (TapState) – ENABLED to enable tapping
or DISABLED to disable
tapping.

	Returns

	A config status code. Disabling
tapping on a device that does not support tapping always succeeds.

	Return type

	ConfigStatus

	
enabled

	Check if tap-to-click is enabled on this device.

If the device does not support tapping, this property is always
DISABLED.

	Returns

	Whether tapping is enabled or disabled.

	Return type

	TapState

	
default_enabled

	The default setting for whether tap-to-click is enabled
on this device.

	Returns

	Whether tapping is enabled or disabled.

	Return type

	TapState

	
set_button_map(button_map)

	Set the finger number to button number mapping for tap-to-click.

The default mapping on most devices is to have a 1, 2 and 3 finger tap
to map to the left, right and middle button, respectively. A device may
permit changing the button mapping but disallow specific maps. In this
case UNSUPPORTED is returned,
the caller is expected to handle this case correctly.

Changing the button mapping may not take effect immediately, the device
may wait until it is in a neutral state before applying any changes.

The mapping may be changed when tap-to-click is disabled. The new
mapping takes effect when tap-to-click is enabled in the future.

If finger_count is 0, this method raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Parameters

	button_map (TapButtonMap) – The new
finger-to-button number mapping.

	Returns

	A config status code.

	Return type

	ConfigStatus

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
button_map

	The finger number to button number mapping for tap-to-click.

For devices that do not support tapping (i.e. finger_count
is 0), this property raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The current finger-to-button
number mapping.

	Return type

	TapButtonMap

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
default_button_map

	The default finger number to button number mapping
for tap-to-click.

For devices that do not support tapping (i.e. finger_count
is 0), this property raises AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

	Returns

	The default finger-to-button
number mapping.

	Return type

	TapButtonMap

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

	
set_drag_enabled(state)

	Enable or disable tap-and-drag on this device.

When enabled, a single-finger tap immediately followed by a finger down
results in a button down event, subsequent finger motion thus triggers
a drag. The button is released on finger up. See Tap-and-drag [https://wayland.freedesktop.org/libinput/doc/latest/tapping.html#tapndrag]
for more details.

	Parameters

	state (DragState) – ENABLED to enable,
DISABLED to disable
tap-and-drag.

	Returns

	Whether this method succeeds.

	Return type

	ConfigStatus

	
drag_enabled

	Whether tap-and-drag is enabled or disabled on this device.

	Returns

	Whether tap-and-drag is enabled.

	Return type

	DragState

	
default_drag_enabled

	Whether tap-and-drag is enabled or disabled by default
on this device.

	Returns

	Whether tap-and-drag is enabled
by default.

	Return type

	DragState

	
set_drag_lock_enabled(state)

	Enable or disable drag-lock during tapping on this device.

When enabled, a finger may be lifted and put back on the touchpad
within a timeout and the drag process continues. When disabled,
lifting the finger during a tap-and-drag will immediately stop
the drag. See Tap-and-drag [https://wayland.freedesktop.org/libinput/doc/latest/tapping.html#tapndrag] for details.

Enabling drag lock on a device that has tapping disabled is permitted,
but has no effect until tapping is enabled.

	Parameters

	state (DragLockState) – ENABLED to enable
drag lock or DISABLED
to disable drag lock.

	Returns

	A config status code. Disabling
drag lock on a device that does not support tapping always succeeds.

	Return type

	ConfigStatus

	
drag_lock_enabled

	Check if drag-lock during tapping is enabled on this device.

If the device does not support tapping, this function always returns
DISABLED.

Drag lock may be enabled even when tapping is disabled.

	Returns

	Whether drag lock is enabled.

	Return type

	DragLockState

	
default_drag_lock_enabled

	Check if drag-lock during tapping is enabled by default
on this device.

If the device does not support tapping, this function always returns
DISABLED.

Drag lock may be enabled by default even when tapping is disabled
by default.

	Returns

	Whether drag lock is enabled
by default.

	Return type

	DragLockState

	
class libinput.device.DeviceConfigCalibration(*args)

	Calibration matrix configuration methods.

	
has_matrix()

	Check if the device can be calibrated via a calibration matrix.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the device can be calibrated, False [https://docs.python.org/3/library/constants.html#False]
otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_matrix(matrix)

	Apply the 3x3 transformation matrix to absolute device coordinates.

This matrix has no effect on relative events.

Given a 6-element array [a, b, c, d, e, f], the matrix is applied as

[a b c] [x]
[d e f] * [y]
[0 0 1] [1]

The translation component (c, f) is expected to be normalized to
the device coordinate range. For example, the matrix

[1 0 1]
[0 1 -1]
[0 0 1]

moves all coordinates by 1 device-width to the right and
1 device-height up.

The rotation matrix for rotation around the origin is defined as

[cos(a) -sin(a) 0]
[sin(a) cos(a) 0]
[0 0 1]

Note that any rotation requires an additional translation component
to translate the rotated coordinates back into the original device
space. The rotation matrixes for 90, 180 and 270 degrees clockwise are:

90 deg cw: 180 deg cw: 270 deg cw:
[0 -1 1] [-1 0 1] [0 1 0]
[1 0 0] [0 -1 1] [-1 0 1]
[0 0 1] [0 0 1] [0 0 1]

	Parameters

	matrix (iterable) – An array representing the first two rows of
a 3x3 matrix as described above.

	Returns

	A config status code.

	Return type

	ConfigStatus

	
matrix

	The current calibration matrix for this device.

	Returns

	False [https://docs.python.org/3/library/constants.html#False] if
no calibration is set and
the returned matrix is the identity matrix, True [https://docs.python.org/3/library/constants.html#True]
otherwise. tuple [https://docs.python.org/3/library/stdtypes.html#tuple] representing the first two rows of
a 3x3 matrix as described in set_matrix().

	Return type

	(bool [https://docs.python.org/3/library/functions.html#bool], (float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]))

	
default_matrix

	The default calibration matrix for this device.

On most devices, this is the identity matrix. If the udev property
LIBINPUT_CALIBRATION_MATRIX is set on the respective udev device,
that property’s value becomes the default matrix, see
Static device configuration via udev [https://wayland.freedesktop.org/libinput/doc/latest/udev_config.html].

	Returns

	False [https://docs.python.org/3/library/constants.html#False] if
no calibration is set and
the returned matrix is the identity matrix, True [https://docs.python.org/3/library/constants.html#True]
otherwise. tuple [https://docs.python.org/3/library/stdtypes.html#tuple] representing the first two rows of
a 3x3 matrix as described
in config_calibration_set_matrix().

	Return type

	(bool [https://docs.python.org/3/library/functions.html#bool], (float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]))

	
class libinput.device.DeviceConfigSendEvents(*args)

	Event sending configuration methods.

	
modes

	The possible send-event modes for this device.

These modes define when a device may process and send events.

	Returns

	A bitmask of possible modes.

	Return type

	SendEventsMode

	
set_mode(mode)

	Set the send-event mode for this device.

The mode defines when the device processes and sends events to
the caller.

The selected mode may not take effect immediately. Events already
received and processed from this device are unaffected and will
be passed to the caller on the next call to
get_event().

If the mode is a bitmask of SendEventsMode,
the device may wait for or generate events until it is in
a neutral state. For example, this may include waiting for or
generating button release events.

If the device is already suspended, this function does nothing and
returns success. Changing the send-event mode on a device that has
been removed is permitted.

	Parameters

	mode (SendEventsMode) – A bitmask of
send-events modes.

	Returns

	A config status code.

	Return type

	ConfigStatus

	
mode

	The send-event mode for this device.

The mode defines when the device processes and sends events to
the caller.

If a caller enables the bits for multiple modes, some of which are
subsets of another mode libinput may drop the bits that are subsets.
In other words, don’t expect mode to always be exactly the same
bitmask as passed into set_mode().

	Returns

	The current bitmask of
the send-event mode for this device.

	Return type

	SendEventsMode

	
default_mode

	The default send-event mode for this device.

The mode defines when the device processes and sends events to
the caller.

	Returns

	The bitmask of
the send-event mode for this device.

	Return type

	SendEventsMode

	
class libinput.device.DeviceConfigAccel(*args)

	Pointer acceleration configuration methods.

	
is_available()

	Check if a device uses libinput-internal pointer-acceleration.

	Returns

	False [https://docs.python.org/3/library/constants.html#False] if the device is not accelerated,
True [https://docs.python.org/3/library/constants.html#True] if it is accelerated

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_speed(speed)

	Set the pointer acceleration speed of this pointer device within
a range of [-1, 1], where 0 is the default acceleration for
this device, -1 is the slowest acceleration and 1 is the maximum
acceleration available on this device.

The actual pointer acceleration mechanism is implementation-dependent,
as is the number of steps available within the range. libinput picks
the semantically closest acceleration step if the requested value
does not match a discrete setting.

	Parameters

	speed (float [https://docs.python.org/3/library/functions.html#float]) – The normalized speed, in a range of [-1, 1].

	Returns

	A config status code.

	Return type

	ConfigStatus

	
speed

	The current pointer acceleration setting for
this pointer device.

The returned value is normalized to a range of [-1, 1]. See
set_speed() for details.

	Returns

	The current speed, range -1 to 1.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
default_speed

	The default speed setting for this device, normalized to
a range of [-1, 1].

See set_speed() for details.

	Returns

	The default speed setting for this device.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
profiles

	A bitmask of the configurable acceleration modes available
on this device.

	Returns

	A bitmask of all configurable
modes available on this device.

	Return type

	AccelProfile

	
set_profile(profile)

	Set the pointer acceleration profile of this pointer device to
the given mode.

	Parameters

	
	profile (AccelProfile) – The mode to set

	device to. (the) –

	Returns

	A config status code.

	Return type

	ConfigStatus

	
profile

	The current pointer acceleration profile for this pointer device.

	Returns

	The currently configured pointer
acceleration profile.

	Return type

	AccelProfile

	
default_profile

	The default pointer acceleration profile for
this pointer device.

	Returns

	The default acceleration profile
for this device.

	Return type

	AccelProfile

	
class libinput.device.DeviceConfigScroll(*args)

	Scrolling configuration methods.

	
has_natural_scroll()

	True [https://docs.python.org/3/library/constants.html#True] if the device supports “natural scrolling”.

In traditional scroll mode, the movement of fingers on a touchpad
when scrolling matches the movement of the scroll bars. When
the fingers move down, the scroll bar moves down, a line of text on
the screen moves towards the upper end of the screen. This also matches
scroll wheels on mice (wheel down, content moves up).

Natural scrolling is the term coined by Apple for inverted scrolling.
In this mode, the effect of scrolling movement of fingers on a touchpad
resemble physical manipulation of paper. When the fingers move down,
a line of text on the screen moves down (scrollbars move up). This is
the opposite of scroll wheels on mice.

A device supporting natural scrolling can be switched between
traditional scroll mode and natural scroll mode.

	Returns

	False [https://docs.python.org/3/library/constants.html#False] if natural scrolling is not supported,
True [https://docs.python.org/3/library/constants.html#True] if natural scrolling is supported by this device.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_natural_scroll_enabled(enable)

	Enable or disable natural scrolling on the device.

	Parameters

	enable (bool [https://docs.python.org/3/library/functions.html#bool]) – True [https://docs.python.org/3/library/constants.html#True] to enable, False [https://docs.python.org/3/library/constants.html#False] to disable
natural scrolling.

	Returns

	A config status code.

	Return type

	ConfigStatus

	
natural_scroll_enabled

	The current mode for scrolling on this device.

	Returns

	False [https://docs.python.org/3/library/constants.html#False] if natural scrolling is disabled, True [https://docs.python.org/3/library/constants.html#True]
if enabled.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
default_natural_scroll_enabled

	The default mode for scrolling on this device.

	Returns

	False [https://docs.python.org/3/library/constants.html#False] if natural scrolling is disabled by default,
True [https://docs.python.org/3/library/constants.html#True] if enabled.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
methods

	Check which scroll methods a device supports.

The method defines when to generate scroll axis events instead of
pointer motion events.

	Returns

	A bitmask of possible methods.

	Return type

	ScrollMethod

	
set_method(method)

	Set the scroll method for this device.

The method defines when to generate scroll axis events instead of
pointer motion events.

Note

Setting ON_BUTTON_DOWN
enables the scroll method, but scrolling is only activated when
the configured button is held down. If no button is set, i.e.
button is 0, scrolling cannot activate.

	Parameters

	method (ScrollMethod) – The scroll method for
this device.

	Returns

	A config status code.

	Return type

	ConfigStatus

	
method

	The scroll method for this device.

The method defines when to generate scroll axis events instead of
pointer motion events.

	Returns

	The current scroll method for
this device.

	Return type

	ScrollMethod

	
default_method

	The default scroll method for this device.

The method defines when to generate scroll axis events instead of
pointer motion events.

	Returns

	The default scroll method for
this device.

	Return type

	ScrollMethod

	
set_button(button)

	Set the button for the
ON_BUTTON_DOWN method for
this device.

When the current scroll method is set to
ON_BUTTON_DOWN, no button
press/release events will be send for the configured button.

When the configured button is pressed, any motion events along
a scroll-capable axis are turned into scroll axis events.

Note

Setting the button does not change the scroll method. To change
the scroll method call set_method().
If the button is 0, button scrolling is effectively disabled.

	Parameters

	button (int [https://docs.python.org/3/library/functions.html#int]) – The button which when pressed
switches to sending scroll events.

	Returns

	A config status code.

	Return type

	ConfigStatus

	
button

	The button for the
ON_BUTTON_DOWN method for
this device.

If ON_BUTTON_DOWN scroll method
is not supported, or no button is set, this property is 0.

Note

The return value is independent of the currently selected
scroll-method. For button scrolling to activate, a device must
have the ON_BUTTON_DOWN
method enabled, and a non-zero button set as scroll button.

	Returns

	The button which when pressed switches
to sending scroll events.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
default_button

	The default button for the
ON_BUTTON_DOWN method for
this device.

If ON_BUTTON_DOWN scroll method
is not supported, or no default button is set, this property is 0.

	Returns

	The default button for the
ON_BUTTON_DOWN method.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
class libinput.device.DeviceConfigLeftHanded(*args)

	Left-handed usage configuration methods.

	
is_available()

	Check if a device has a configuration that supports left-handed
usage.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the device can be set to left-handed,
or False [https://docs.python.org/3/library/constants.html#False] otherwise

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set(enable)

	Set the left-handed configuration of the device.

The exact behavior is device-dependent. On a mouse and most pointing
devices, left and right buttons are swapped but the middle button is
unmodified. On a touchpad, physical buttons (if present) are swapped.
On a clickpad, the top and bottom software-emulated buttons are
swapped where present, the main area of the touchpad remains a left
button. Tapping and clickfinger behavior is not affected by this
setting.

Changing the left-handed configuration of a device may not take effect
until all buttons have been logically released.

	Parameters

	
	enable (bool [https://docs.python.org/3/library/functions.html#bool]) – False [https://docs.python.org/3/library/constants.html#False] to disable, True [https://docs.python.org/3/library/constants.html#True] to enable

	mode. (left-handed) –

	Returns

	A configuration status code.

	Return type

	ConfigStatus

	
enabled

	The current left-handed configuration of the device.

	Returns

	False [https://docs.python.org/3/library/constants.html#False] if the device is in right-handed mode,
True [https://docs.python.org/3/library/constants.html#True] if the device is in left-handed mode.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
default_enabled

	The default left-handed configuration of the device.

	Returns

	False [https://docs.python.org/3/library/constants.html#False] if the device is in right-handed mode
by default, or True [https://docs.python.org/3/library/constants.html#True] if the device is in left-handed mode
by default.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class libinput.device.DeviceConfigClick(*args)

	Click method configuration methods.

	
methods

	Check which button click methods a device supports.

The button click method defines when to generate software-emulated
buttons, usually on a device that does not have a specific physical
button available.

	Returns

	A bitmask of possible methods.

	Return type

	ClickMethod

	
set_method(method)

	Set the button click method for this device.

The button click method defines when to generate software-emulated
buttons, usually on a device that does not have a specific physical
button available.

Note

The selected click method may not take effect immediately.
The device may require changing to a neutral state first before
activating the new method.

	Parameters

	method (ClickMethod) – The button click method.

	Returns

	A config status code.

	Return type

	ConfigStatus

	
method

	The button click method for this device.

The button click method defines when to generate software-emulated
buttons, usually on a device that does not have a specific physical
button available.

	Returns

	The current button click method
for this device.

	Return type

	ClickMethod

	
default_method

	The default button click method for this device.

The button click method defines when to generate software-emulated
buttons, usually on a device that does not have a specific physical
button available.

	Returns

	The default button click method
for this device.

	Return type

	ClickMethod

	
class libinput.device.DeviceConfigMiddleEmulation(*args)

	Middle mouse button emulation configuration methods.

	
is_available()

	Check if middle mouse button emulation configuration is available
on this device.

See Middle button emulation [https://wayland.freedesktop.org/libinput/doc/latest/middle_button_emulation.html] for details.

Note

Some devices provide middle mouse button emulation but do not
allow enabling/disabling that emulation. These devices return
False [https://docs.python.org/3/library/constants.html#False] in is_available.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if middle mouse button emulation is available
and can be configured, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_enabled(state)

	Enable or disable middle button emulation on this device.

When enabled, a simultaneous press of the left and right button
generates a middle mouse button event. Releasing the buttons generates
a middle mouse button release, the left and right button events are
discarded otherwise.

See Middle button emulation [https://wayland.freedesktop.org/libinput/doc/latest/middle_button_emulation.html] for details.

	Parameters

	state (MiddleEmulationState) – DISABLED
to disable,
ENABLED
to enable middle button emulation.

	Returns

	A config status code. Disabling
middle button emulation on a device that does not support
middle button emulation always succeeds.

	Return type

	ConfigStatus

	
enabled

	Check if configurable middle button emulation is enabled on
this device.

See Middle button emulation [https://wayland.freedesktop.org/libinput/doc/latest/middle_button_emulation.html] for details.

If the device does not have configurable middle button emulation,
this method returns
DISABLED.

Note

Some devices provide middle mouse button emulation but do not
allow enabling/disabling that emulation. These devices always
return DISABLED.

	Returns

	DISABLED if
disabled or not available/configurable,
ENABLED
if enabled.

	Return type

	MiddleEmulationState

	
default_enabled

	Check if configurable middle button emulation is enabled by default
on this device.

See Middle button emulation [https://wayland.freedesktop.org/libinput/doc/latest/middle_button_emulation.html] for details.

If the device does not have configurable middle button emulation,
this method returns
DISABLED.

Note

Some devices provide middle mouse button emulation but do not
allow enabling/disabling that emulation. These devices always
return DISABLED.

	Returns

	DISABLED if
disabled or not available,
ENABLED
if enabled.

	Return type

	MiddleEmulationState

	
class libinput.device.DeviceConfigDwt(*args)

	Disable-while-typing configuration methods.

	
is_available()

	Check if this device supports configurable
disable-while-typing feature.

This feature is usually available on built-in touchpads and disables
the touchpad while typing. See Disable-while-typing [https://wayland.freedesktop.org/libinput/doc/latest/palm_detection.html#disable-while-typing] for details.

	Returns

	False [https://docs.python.org/3/library/constants.html#False] if this device does not support
disable-while-typing, or True [https://docs.python.org/3/library/constants.html#True] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_enabled(state)

	Enable or disable the disable-while-typing feature.

When enabled, the device will be disabled while typing and for
a short period after. See Disable-while-typing [https://wayland.freedesktop.org/libinput/doc/latest/palm_detection.html#disable-while-typing] for details.

Note

Enabling or disabling disable-while-typing may not take
effect immediately.

	Parameters

	state (DwtState) – DISABLED to disable
disable-while-typing,
ENABLED to enable.

	Returns

	A config status code. Disabling
disable-while-typing on a device that does not support the feature
always succeeds.

	Return type

	ConfigStatus

	
enabled

	Check if the disable-while typing feature is currently enabled on
this device.

If the device does not support disable-while-typing, this property
is DISABLED.

	Returns

	DISABLED if disabled,
ENABLED if enabled.

	Return type

	DwtState

	
default_enabled

	Check if the disable-while typing feature is enabled on this device
by default.

If the device does not support disable-while-typing, this property
is DISABLED.

	Returns

	DISABLED if disabled,
ENABLED if enabled.

	Return type

	DwtState

	
class libinput.device.DeviceConfigRotation(*args)

	Rotation configuration methods.

	
is_available()

	Check whether a device can have a custom rotation applied.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if a device can be rotated, False [https://docs.python.org/3/library/constants.html#False]
otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
set_angle(degrees_cw)

	Set the rotation of a device in degrees clockwise off the logical
neutral position.

Any subsequent motion events are adjusted according to the given angle.

The angle has to be in the range of [0, 360] degrees, otherwise this
method returns INVALID.
If the angle is a multiple of 360 or negative, the caller must ensure
the correct ranging before calling this method.

libinput guarantees that this method accepts multiples of 90 degrees.
If a value is within the [0, 360] range but not a multiple of
90 degrees, this method may return
INVALID if the underlying
device or implementation does not support finer-grained rotation angles.

The rotation angle is applied to all motion events emitted by
the device. Thus, rotating the device also changes the angle required
or presented by scrolling, gestures, etc.

	Parameters

	degrees_cw (int [https://docs.python.org/3/library/functions.html#int]) – The angle in degrees clockwise.

	Returns

	A config status code. Setting
a rotation of 0 degrees on a device that does not support rotation
always succeeds.

	Return type

	ConfigStatus

	
angle

	The current rotation of a device in degrees clockwise off
the logical neutral position.

If this device does not support rotation, the return value is always 0.

	Returns

	The angle in degrees clockwise.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
default_angle

	The default rotation of a device in degrees clockwise off
the logical neutral position.

If this device does not support rotation, the return value is always 0.

	Returns

	The default angle in degrees clockwise.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

Misc. objects

TabletTool

	
class libinput.define.TabletTool(htablettool, libinput)

	An object representing a tool being used by a device with
the TABLET_TOOL capability.

Tablet events generated by such a device are bound to a specific tool
rather than coming from the device directly. Depending on the hardware
it is possible to track the same physical tool across multiple
Device instances, see Tracking unique tools [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-serial-numbers].

As long as a reference to a TabletTool is kept, multiple
instances will compare equal if they refer to the same physical tool and
the hardware supports it.

	
type

	The tool type of a tool object.

See Vendor-specific tablet tool types [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-tool-types] for details.

	Returns

	The tool type for this tool
object.

	Return type

	TabletToolType

	
tool_id

	The tool ID of a tool object.

If nonzero, this number identifies the specific type of the tool with
more precision than the type returned in type,
see Vendor-specific tablet tool types [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-tool-types]. Not all tablets support
a tool ID.

Tablets known to support tool IDs include the Wacom Intuos 3, 4, 5,
Wacom Cintiq and Wacom Intuos Pro series.

	Returns

	The tool ID for this tool object or 0 if none is provided.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
has_pressure()

	Return whether the tablet tool supports pressure.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the axis is available, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
has_distance()

	Return whether the tablet tool supports distance.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the axis is available, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
has_tilt()

	Return whether the tablet tool supports tilt.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the axis is available, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
has_rotation()

	Return whether the tablet tool supports z-rotation.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the axis is available, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
has_slider()

	Return whether the tablet tool has a slider axis.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the axis is available, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
has_wheel()

	Return whether the tablet tool has a relative wheel.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the axis is available, False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
has_button(button)

	Check if a tablet tool has a specified button.

	Parameters

	button (int [https://docs.python.org/3/library/functions.html#int]) – Button to check for. See input.h.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the tool supports this button, False [https://docs.python.org/3/library/constants.html#False]
if it does not.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_unique()

	Return True [https://docs.python.org/3/library/constants.html#True] if the physical tool can be uniquely identified
by libinput, or False [https://docs.python.org/3/library/constants.html#False] otherwise.

If a tool can be uniquely identified, keeping a reference to the tool
allows tracking the tool across proximity out sequences and across
compatible tablets. See Tracking unique tools [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-serial-numbers] for more details.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the tool can be uniquely identified,
False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
serial

	The serial number of a tool.

If the tool does not report a serial number, this method returns zero.
See Tracking unique tools [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-serial-numbers] for details.

	Returns

	The tool serial number.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

TabletPadModeGroup

	
class libinput.define.TabletPadModeGroup(hmodegroup, libinput)

	A mode on a tablet pad is a virtual grouping of functionality, usually
based on some visual feedback like LEDs on the pad.

The set of buttons, rings and strips that share the same mode are
a “mode group”. Whenever the mode changes, all buttons, rings and strips
within this mode group are affected. See Tablet pad modes [https://wayland.freedesktop.org/libinput/doc/latest/tablet-support.html#tablet-pad-modes] for detail.

Most tablets only have a single mode group, some tablets provide multiple
mode groups through independent banks of LEDs (e.g. the Wacom Cintiq 24HD).
libinput guarantees that at least one mode group is always available.

	
index

	The returned number is the same index as passed to
tablet_pad_get_mode_group().

For tablets with only one mode this number is always 0.

	Returns

	The numeric index this mode group represents, starting at 0.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
num_modes

	Query the mode group for the number of available modes.

The number of modes is usually decided by the number of physical LEDs
available on the device. Different mode groups may have a different
number of modes. Use mode to get the currently active mode.

libinput guarantees that at least one mode is available. A device
without mode switching capability has a single mode group and
a single mode.

	Returns

	The number of modes available in this mode group.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
mode

	The current mode this mode group is in.

	Returns

	The numeric index of the current mode in this group, starting
at 0.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
has_button(button)

	Devices without mode switching capabilities return True [https://docs.python.org/3/library/constants.html#True]
for every button.

	Parameters

	button (int [https://docs.python.org/3/library/functions.html#int]) – A button index, starting at 0.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the given button index is part of this
mode group or False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
has_ring(ring)

	Devices without mode switching capabilities return True [https://docs.python.org/3/library/constants.html#True]
for every ring.

	Parameters

	ring (int [https://docs.python.org/3/library/functions.html#int]) – A ring index, starting at 0.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the given ring index is part of this
mode group or False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
has_strip(strip)

	Devices without mode switching capabilities return True [https://docs.python.org/3/library/constants.html#True]
for every strip.

	Parameters

	strip (int [https://docs.python.org/3/library/functions.html#int]) – A strip index, starting at 0.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the given strip index is part of this
mode group or False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
button_is_toggle(button)

	The toggle button in a mode group is the button assigned to cycle
to or directly assign a new mode when pressed.

Not all devices have a toggle button and some devices may have more
than one toggle button. For example, the Wacom Cintiq 24HD has six
toggle buttons in two groups, each directly selecting one of the three
modes per group.

Devices without mode switching capabilities return False [https://docs.python.org/3/library/constants.html#False]
for every button.

	Parameters

	button (int [https://docs.python.org/3/library/functions.html#int]) – A button index, starting at 0.

	Returns

	True [https://docs.python.org/3/library/constants.html#True] if the button is a mode toggle button for
this group, or False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Constants and Enumerations

	
class libinput.constant.LogPriority(*args, **kwds)

	
	
DEBUG = 10

	

	
INFO = 20

	

	
ERROR = 30

	

	
class libinput.constant.ContextType(*args, **kwds)

	
	
PATH = 1

	

	
UDEV = 2

	

	
class libinput.constant.EventType(*args, **kwds)

	
	
NONE = 0

	

	
DEVICE_ADDED = 1

	

	
DEVICE_REMOVED = 2

	

	
KEYBOARD_KEY = 300

	

	
POINTER_MOTION = 400

	

	
POINTER_MOTION_ABSOLUTE = 401

	

	
POINTER_BUTTON = 402

	

	
POINTER_AXIS = 403

	

	
TOUCH_DOWN = 500

	

	
TOUCH_UP = 501

	

	
TOUCH_MOTION = 502

	

	
TOUCH_CANCEL = 503

	

	
TOUCH_FRAME = 504

	

	
TABLET_TOOL_AXIS = 600

	

	
TABLET_TOOL_PROXIMITY = 601

	

	
TABLET_TOOL_TIP = 602

	

	
TABLET_TOOL_BUTTON = 603

	

	
TABLET_PAD_BUTTON = 700

	

	
TABLET_PAD_RING = 701

	

	
TABLET_PAD_STRIP = 702

	

	
GESTURE_SWIPE_BEGIN = 800

	

	
GESTURE_SWIPE_UPDATE = 801

	

	
GESTURE_SWIPE_END = 802

	

	
GESTURE_PINCH_BEGIN = 803

	

	
GESTURE_PINCH_UPDATE = 804

	

	
GESTURE_PINCH_END = 805

	

	
SWITCH_TOGGLE = 900

	

	
is_device()

	Macro to check if this event is
a DeviceNotifyEvent.

	
is_keyboard()

	Macro to check if this event is
a KeyboardEvent.

	
is_pointer()

	Macro to check if this event is
a PointerEvent.

	
is_touch()

	Macro to check if this event is
a TouchEvent.

	
is_tablet_tool()

	Macro to check if this event is
a TabletToolEvent.

	
is_tablet_pad()

	Macro to check if this event is
a TabletPadEvent.

	
is_gesture()

	Macro to check if this event is
a GestureEvent.

	
is_switch()

	Macro to check if this event is
a SwitchEvent.

	
class libinput.constant.DeviceCapability(*args, **kwds)

	
	
KEYBOARD = 0

	

	
POINTER = 1

	

	
TOUCH = 2

	

	
TABLET_TOOL = 3

	

	
TABLET_PAD = 4

	

	
GESTURE = 5

	

	
SWITCH = 6

	

	
class libinput.constant.KeyState(*args, **kwds)

	
	
RELEASED = 0

	

	
PRESSED = 1

	

	
class libinput.constant.Led(*args, **kwds)

	
	
NUM_LOCK = 1

	

	
CAPS_LOCK = 2

	

	
SCROLL_LOCK = 4

	

	
class libinput.constant.ButtonState(*args, **kwds)

	
	
RELEASED = 0

	

	
PRESSED = 1

	

	
class libinput.constant.PointerAxis(*args, **kwds)

	
	
SCROLL_VERTICAL = 0

	

	
SCROLL_HORIZONTAL = 1

	

	
class libinput.constant.PointerAxisSource(*args, **kwds)

	
	
NONE = 0

	

	
WHEEL = 1

	

	
FINGER = 2

	

	
CONTINUOUS = 3

	

	
WHEEL_TILT = 4

	

	
class libinput.constant.TabletPadRingAxisSource(*args, **kwds)

	
	
UNKNOWN = 1

	

	
FINGER = 2

	

	
class libinput.constant.TabletPadStripAxisSource(*args, **kwds)

	
	
UNKNOWN = 1

	

	
FINGER = 2

	

	
class libinput.constant.TabletToolType(*args, **kwds)

	
	
PEN = 1

	

	
ERASER = 2

	

	
BRUSH = 3

	

	
PENCIL = 4

	

	
AIRBRUSH = 5

	

	
MOUSE = 6

	

	
LENS = 7

	

	
class libinput.constant.TabletToolProximityState(*args, **kwds)

	
	
OUT = 0

	

	
IN = 1

	

	
class libinput.constant.TabletToolTipState(*args, **kwds)

	
	
UP = 0

	

	
DOWN = 1

	

	
class libinput.constant.SwitchState(*args, **kwds)

	
	
OFF = 0

	

	
ON = 1

	

	
class libinput.constant.Switch(*args, **kwds)

	
	
LID = 1

	

	
class libinput.constant.ConfigStatus(*args, **kwds)

	
	
SUCCESS = 0

	

	
UNSUPPORTED = 1

	

	
INVALID = 2

	

	
class libinput.constant.TapState(*args, **kwds)

	
	
DISABLED = 0

	

	
ENABLED = 1

	

	
class libinput.constant.TapButtonMap(*args, **kwds)

	
	
LRM = 0

	

	
LMR = 1

	

	
class libinput.constant.DragState(*args, **kwds)

	
	
DISABLED = 0

	

	
ENABLED = 1

	

	
class libinput.constant.DragLockState(*args, **kwds)

	
	
DISABLED = 0

	

	
ENABLED = 1

	

	
class libinput.constant.SendEventsMode(*args, **kwds)

	
	
ENABLED = 0

	

	
DISABLED = 1

	

	
DISABLED_ON_EXTERNAL_MOUSE = 2

	

	
class libinput.constant.AccelProfile(*args, **kwds)

	
	
NONE = 0

	

	
FLAT = 1

	

	
ADAPTIVE = 2

	

	
class libinput.constant.ClickMethod(*args, **kwds)

	
	
NONE = 0

	

	
BUTTON_AREAS = 1

	

	
CLICKFINGER = 2

	

	
class libinput.constant.MiddleEmulationState(*args, **kwds)

	
	
DISABLED = 0

	

	
ENABLED = 1

	

	
class libinput.constant.ScrollMethod(*args, **kwds)

	
	
NO_SCROLL = 0

	

	
SCROLL_2FG = 1

	

	
EDGE = 2

	

	
ON_BUTTON_DOWN = 4

	

	
class libinput.constant.DwtState(*args, **kwds)

	
	
DISABLED = 0

	

	
ENABLED = 1

	

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 libinput	

 	
 	
 libinput.constant	

 	
 	
 libinput.define	

 	
 	
 libinput.device	

 	
 	
 libinput.event	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (libinput.LibInput method)

A

 	
 	absolute_coords (libinput.event.PointerEvent attribute)

 	accel (libinput.device.DeviceConfig attribute)

 	AccelProfile (class in libinput.constant)

 	ADAPTIVE (libinput.constant.AccelProfile attribute)

 	add_device() (libinput.LibInputPath method)

 	
 	AIRBRUSH (libinput.constant.TabletToolType attribute)

 	angle (libinput.device.DeviceConfigRotation attribute)

 	angle_delta (libinput.event.GestureEvent attribute)

 	assign_seat() (libinput.LibInputUdev method)

 	axis_source (libinput.event.PointerEvent attribute)

B

 	
 	BRUSH (libinput.constant.TabletToolType attribute)

 	button (libinput.device.DeviceConfigScroll attribute)

 	(libinput.event.PointerEvent attribute)

 	(libinput.event.TabletToolEvent attribute)

 	BUTTON_AREAS (libinput.constant.ClickMethod attribute)

 	button_is_toggle() (libinput.define.TabletPadModeGroup method)

 	
 	button_map (libinput.device.DeviceConfigTap attribute)

 	button_number (libinput.event.TabletPadEvent attribute)

 	button_state (libinput.event.PointerEvent attribute)

 	(libinput.event.TabletPadEvent attribute)

 	(libinput.event.TabletToolEvent attribute)

 	ButtonState (class in libinput.constant)

C

 	
 	calibration (libinput.device.DeviceConfig attribute)

 	cancelled (libinput.event.GestureEvent attribute)

 	CAPS_LOCK (libinput.constant.Led attribute)

 	click (libinput.device.DeviceConfig attribute)

 	CLICKFINGER (libinput.constant.ClickMethod attribute)

 	ClickMethod (class in libinput.constant)

 	
 	config (libinput.device.Device attribute)

 	ConfigStatus (class in libinput.constant)

 	ContextType (class in libinput.constant)

 	CONTINUOUS (libinput.constant.PointerAxisSource attribute)

 	coords (libinput.event.TabletToolEvent attribute)

 	(libinput.event.TouchEvent attribute)

 	coords_have_changed (libinput.event.TabletToolEvent attribute)

D

 	
 	DEBUG (libinput.constant.LogPriority attribute)

 	default_angle (libinput.device.DeviceConfigRotation attribute)

 	default_button (libinput.device.DeviceConfigScroll attribute)

 	default_button_map (libinput.device.DeviceConfigTap attribute)

 	default_drag_enabled (libinput.device.DeviceConfigTap attribute)

 	default_drag_lock_enabled (libinput.device.DeviceConfigTap attribute)

 	default_enabled (libinput.device.DeviceConfigDwt attribute)

 	(libinput.device.DeviceConfigLeftHanded attribute)

 	(libinput.device.DeviceConfigMiddleEmulation attribute)

 	(libinput.device.DeviceConfigTap attribute)

 	default_matrix (libinput.device.DeviceConfigCalibration attribute)

 	default_method (libinput.device.DeviceConfigClick attribute)

 	(libinput.device.DeviceConfigScroll attribute)

 	default_mode (libinput.device.DeviceConfigSendEvents attribute)

 	default_natural_scroll_enabled (libinput.device.DeviceConfigScroll attribute)

 	default_profile (libinput.device.DeviceConfigAccel attribute)

 	default_speed (libinput.device.DeviceConfigAccel attribute)

 	delta (libinput.event.GestureEvent attribute)

 	(libinput.event.PointerEvent attribute)

 	(libinput.event.TabletToolEvent attribute)

 	delta_unaccelerated (libinput.event.GestureEvent attribute)

 	(libinput.event.PointerEvent attribute)

 	Device (class in libinput.device)

 	device (libinput.event.Event attribute)

 	DEVICE_ADDED (libinput.constant.EventType attribute)

 	DEVICE_REMOVED (libinput.constant.EventType attribute)

 	DeviceCapability (class in libinput.constant)

 	
 	DeviceConfig (class in libinput.device)

 	DeviceConfigAccel (class in libinput.device)

 	DeviceConfigCalibration (class in libinput.device)

 	DeviceConfigClick (class in libinput.device)

 	DeviceConfigDwt (class in libinput.device)

 	DeviceConfigLeftHanded (class in libinput.device)

 	DeviceConfigMiddleEmulation (class in libinput.device)

 	DeviceConfigRotation (class in libinput.device)

 	DeviceConfigScroll (class in libinput.device)

 	DeviceConfigSendEvents (class in libinput.device)

 	DeviceConfigTap (class in libinput.device)

 	DeviceNotifyEvent (class in libinput.event)

 	DISABLED (libinput.constant.DragLockState attribute)

 	(libinput.constant.DragState attribute)

 	(libinput.constant.DwtState attribute)

 	(libinput.constant.MiddleEmulationState attribute)

 	(libinput.constant.SendEventsMode attribute)

 	(libinput.constant.TapState attribute)

 	DISABLED_ON_EXTERNAL_MOUSE (libinput.constant.SendEventsMode attribute)

 	distance (libinput.event.TabletToolEvent attribute)

 	distance_has_changed (libinput.event.TabletToolEvent attribute)

 	DOWN (libinput.constant.TabletToolTipState attribute)

 	drag_enabled (libinput.device.DeviceConfigTap attribute)

 	drag_lock_enabled (libinput.device.DeviceConfigTap attribute)

 	DragLockState (class in libinput.constant)

 	DragState (class in libinput.constant)

 	dwt (libinput.device.DeviceConfig attribute)

 	DwtState (class in libinput.constant)

E

 	
 	EDGE (libinput.constant.ScrollMethod attribute)

 	ENABLED (libinput.constant.DragLockState attribute)

 	(libinput.constant.DragState attribute)

 	(libinput.constant.DwtState attribute)

 	(libinput.constant.MiddleEmulationState attribute)

 	(libinput.constant.SendEventsMode attribute)

 	(libinput.constant.TapState attribute)

 	
 	enabled (libinput.device.DeviceConfigDwt attribute)

 	(libinput.device.DeviceConfigLeftHanded attribute)

 	(libinput.device.DeviceConfigMiddleEmulation attribute)

 	(libinput.device.DeviceConfigTap attribute)

 	ERASER (libinput.constant.TabletToolType attribute)

 	ERROR (libinput.constant.LogPriority attribute)

 	Event (class in libinput.event)

 	EventType (class in libinput.constant)

F

 	
 	FINGER (libinput.constant.PointerAxisSource attribute)

 	(libinput.constant.TabletPadRingAxisSource attribute)

 	(libinput.constant.TabletPadStripAxisSource attribute)

 	
 	finger_count (libinput.device.DeviceConfigTap attribute)

 	(libinput.event.GestureEvent attribute)

 	FLAT (libinput.constant.AccelProfile attribute)

G

 	
 	GESTURE (libinput.constant.DeviceCapability attribute)

 	GESTURE_PINCH_BEGIN (libinput.constant.EventType attribute)

 	GESTURE_PINCH_END (libinput.constant.EventType attribute)

 	GESTURE_PINCH_UPDATE (libinput.constant.EventType attribute)

 	GESTURE_SWIPE_BEGIN (libinput.constant.EventType attribute)

 	
 	GESTURE_SWIPE_END (libinput.constant.EventType attribute)

 	GESTURE_SWIPE_UPDATE (libinput.constant.EventType attribute)

 	GestureEvent (class in libinput.event)

 	get_axis_value() (libinput.event.PointerEvent method)

 	get_axis_value_discrete() (libinput.event.PointerEvent method)

 	get_event() (libinput.LibInput method)

H

 	
 	has_axis() (libinput.event.PointerEvent method)

 	has_button() (libinput.define.TabletPadModeGroup method)

 	(libinput.define.TabletTool method)

 	has_capability() (libinput.device.Device method)

 	has_distance() (libinput.define.TabletTool method)

 	has_matrix() (libinput.device.DeviceConfigCalibration method)

 	has_natural_scroll() (libinput.device.DeviceConfigScroll method)

 	
 	has_pressure() (libinput.define.TabletTool method)

 	has_ring() (libinput.define.TabletPadModeGroup method)

 	has_rotation() (libinput.define.TabletTool method)

 	has_slider() (libinput.define.TabletTool method)

 	has_strip() (libinput.define.TabletPadModeGroup method)

 	has_tilt() (libinput.define.TabletTool method)

 	has_wheel() (libinput.define.TabletTool method)

I

 	
 	id_product (libinput.device.Device attribute)

 	id_vendor (libinput.device.Device attribute)

 	IN (libinput.constant.TabletToolProximityState attribute)

 	index (libinput.define.TabletPadModeGroup attribute)

 	INFO (libinput.constant.LogPriority attribute)

 	INVALID (libinput.constant.ConfigStatus attribute)

 	is_available() (libinput.device.DeviceConfigAccel method)

 	(libinput.device.DeviceConfigDwt method)

 	(libinput.device.DeviceConfigLeftHanded method)

 	(libinput.device.DeviceConfigMiddleEmulation method)

 	(libinput.device.DeviceConfigRotation method)

 	
 	is_device() (libinput.constant.EventType method)

 	is_gesture() (libinput.constant.EventType method)

 	is_keyboard() (libinput.constant.EventType method)

 	is_pointer() (libinput.constant.EventType method)

 	is_switch() (libinput.constant.EventType method)

 	is_tablet_pad() (libinput.constant.EventType method)

 	is_tablet_tool() (libinput.constant.EventType method)

 	is_touch() (libinput.constant.EventType method)

 	is_unique() (libinput.define.TabletTool method)

K

 	
 	key (libinput.event.KeyboardEvent attribute)

 	key_state (libinput.event.KeyboardEvent attribute)

 	KEYBOARD (libinput.constant.DeviceCapability attribute)

 	
 	keyboard_has_key() (libinput.device.Device method)

 	KEYBOARD_KEY (libinput.constant.EventType attribute)

 	KeyboardEvent (class in libinput.event)

 	KeyState (class in libinput.constant)

L

 	
 	Led (class in libinput.constant)

 	led_update() (libinput.device.Device method)

 	left_handed (libinput.device.DeviceConfig attribute)

 	LENS (libinput.constant.TabletToolType attribute)

 	LibInput (class in libinput)

 	libinput (module)

 	libinput.constant (module)

 	libinput.define (module)

 	libinput.device (module)

 	
 	libinput.event (module)

 	LibInputPath (class in libinput)

 	LibInputUdev (class in libinput)

 	LID (libinput.constant.Switch attribute)

 	LMR (libinput.constant.TapButtonMap attribute)

 	log_handler (libinput.LibInput attribute)

 	logical_name (libinput.device.Seat attribute)

 	LogPriority (class in libinput.constant)

 	LRM (libinput.constant.TapButtonMap attribute)

M

 	
 	matrix (libinput.device.DeviceConfigCalibration attribute)

 	method (libinput.device.DeviceConfigClick attribute)

 	(libinput.device.DeviceConfigScroll attribute)

 	methods (libinput.device.DeviceConfigClick attribute)

 	(libinput.device.DeviceConfigScroll attribute)

 	middle_emulation (libinput.device.DeviceConfig attribute)

 	
 	MiddleEmulationState (class in libinput.constant)

 	mode (libinput.define.TabletPadModeGroup attribute)

 	(libinput.device.DeviceConfigSendEvents attribute)

 	(libinput.event.TabletPadEvent attribute)

 	mode_group (libinput.event.TabletPadEvent attribute)

 	modes (libinput.device.DeviceConfigSendEvents attribute)

 	MOUSE (libinput.constant.TabletToolType attribute)

N

 	
 	name (libinput.device.Device attribute)

 	natural_scroll_enabled (libinput.device.DeviceConfigScroll attribute)

 	next_event_type() (libinput.LibInput method)

 	NO_SCROLL (libinput.constant.ScrollMethod attribute)

 	NONE (libinput.constant.AccelProfile attribute)

 	(libinput.constant.ClickMethod attribute)

 	(libinput.constant.EventType attribute)

 	(libinput.constant.PointerAxisSource attribute)

 	
 	NUM_LOCK (libinput.constant.Led attribute)

 	num_modes (libinput.define.TabletPadModeGroup attribute)

O

 	
 	OFF (libinput.constant.SwitchState attribute)

 	ON (libinput.constant.SwitchState attribute)

 	
 	ON_BUTTON_DOWN (libinput.constant.ScrollMethod attribute)

 	OUT (libinput.constant.TabletToolProximityState attribute)

P

 	
 	PATH (libinput.constant.ContextType attribute)

 	PEN (libinput.constant.TabletToolType attribute)

 	PENCIL (libinput.constant.TabletToolType attribute)

 	physical_name (libinput.device.Seat attribute)

 	POINTER (libinput.constant.DeviceCapability attribute)

 	POINTER_AXIS (libinput.constant.EventType attribute)

 	POINTER_BUTTON (libinput.constant.EventType attribute)

 	pointer_has_button() (libinput.device.Device method)

 	POINTER_MOTION (libinput.constant.EventType attribute)

 	POINTER_MOTION_ABSOLUTE (libinput.constant.EventType attribute)

 	
 	PointerAxis (class in libinput.constant)

 	PointerAxisSource (class in libinput.constant)

 	PointerEvent (class in libinput.event)

 	PRESSED (libinput.constant.ButtonState attribute)

 	(libinput.constant.KeyState attribute)

 	pressure (libinput.event.TabletToolEvent attribute)

 	pressure_has_changed (libinput.event.TabletToolEvent attribute)

 	profile (libinput.device.DeviceConfigAccel attribute)

 	profiles (libinput.device.DeviceConfigAccel attribute)

 	proximity_state (libinput.event.TabletToolEvent attribute)

R

 	
 	RELEASED (libinput.constant.ButtonState attribute)

 	(libinput.constant.KeyState attribute)

 	remove_device() (libinput.LibInputPath method)

 	resume() (libinput.LibInput method)

 	ring_number (libinput.event.TabletPadEvent attribute)

 	
 	ring_position (libinput.event.TabletPadEvent attribute)

 	ring_source (libinput.event.TabletPadEvent attribute)

 	rotation (libinput.device.DeviceConfig attribute)

 	(libinput.event.TabletToolEvent attribute)

 	rotation_has_changed (libinput.event.TabletToolEvent attribute)

S

 	
 	scale (libinput.event.GestureEvent attribute)

 	scroll (libinput.device.DeviceConfig attribute)

 	SCROLL_2FG (libinput.constant.ScrollMethod attribute)

 	SCROLL_HORIZONTAL (libinput.constant.PointerAxis attribute)

 	SCROLL_LOCK (libinput.constant.Led attribute)

 	SCROLL_VERTICAL (libinput.constant.PointerAxis attribute)

 	ScrollMethod (class in libinput.constant)

 	Seat (class in libinput.device)

 	seat (libinput.device.Device attribute)

 	seat_button_count (libinput.event.PointerEvent attribute)

 	(libinput.event.TabletToolEvent attribute)

 	seat_key_count (libinput.event.KeyboardEvent attribute)

 	seat_slot (libinput.event.TouchEvent attribute)

 	send_events (libinput.device.DeviceConfig attribute)

 	SendEventsMode (class in libinput.constant)

 	serial (libinput.define.TabletTool attribute)

 	set() (libinput.device.DeviceConfigLeftHanded method)

 	set_angle() (libinput.device.DeviceConfigRotation method)

 	set_button() (libinput.device.DeviceConfigScroll method)

 	set_button_map() (libinput.device.DeviceConfigTap method)

 	set_drag_enabled() (libinput.device.DeviceConfigTap method)

 	set_drag_lock_enabled() (libinput.device.DeviceConfigTap method)

 	set_enabled() (libinput.device.DeviceConfigDwt method)

 	(libinput.device.DeviceConfigMiddleEmulation method)

 	(libinput.device.DeviceConfigTap method)

 	
 	set_matrix() (libinput.device.DeviceConfigCalibration method)

 	set_method() (libinput.device.DeviceConfigClick method)

 	(libinput.device.DeviceConfigScroll method)

 	set_mode() (libinput.device.DeviceConfigSendEvents method)

 	set_natural_scroll_enabled() (libinput.device.DeviceConfigScroll method)

 	set_profile() (libinput.device.DeviceConfigAccel method)

 	set_seat_logical_name() (libinput.device.Device method)

 	set_speed() (libinput.device.DeviceConfigAccel method)

 	size (libinput.device.Device attribute)

 	slider_has_changed (libinput.event.TabletToolEvent attribute)

 	slider_position (libinput.event.TabletToolEvent attribute)

 	slot (libinput.event.TouchEvent attribute)

 	speed (libinput.device.DeviceConfigAccel attribute)

 	strip_number (libinput.event.TabletPadEvent attribute)

 	strip_position (libinput.event.TabletPadEvent attribute)

 	strip_source (libinput.event.TabletPadEvent attribute)

 	SUCCESS (libinput.constant.ConfigStatus attribute)

 	suspend() (libinput.LibInput method)

 	Switch (class in libinput.constant)

 	SWITCH (libinput.constant.DeviceCapability attribute)

 	switch (libinput.event.SwitchEvent attribute)

 	switch_state (libinput.event.SwitchEvent attribute)

 	SWITCH_TOGGLE (libinput.constant.EventType attribute)

 	SwitchEvent (class in libinput.event)

 	SwitchState (class in libinput.constant)

 	sysname (libinput.device.Device attribute)

T

 	
 	TABLET_PAD (libinput.constant.DeviceCapability attribute)

 	TABLET_PAD_BUTTON (libinput.constant.EventType attribute)

 	tablet_pad_get_mode_group() (libinput.device.Device method)

 	tablet_pad_get_num_buttons() (libinput.device.Device method)

 	tablet_pad_get_num_mode_groups() (libinput.device.Device method)

 	tablet_pad_get_num_rings() (libinput.device.Device method)

 	tablet_pad_get_num_strips() (libinput.device.Device method)

 	TABLET_PAD_RING (libinput.constant.EventType attribute)

 	TABLET_PAD_STRIP (libinput.constant.EventType attribute)

 	TABLET_TOOL (libinput.constant.DeviceCapability attribute)

 	TABLET_TOOL_AXIS (libinput.constant.EventType attribute)

 	TABLET_TOOL_BUTTON (libinput.constant.EventType attribute)

 	TABLET_TOOL_PROXIMITY (libinput.constant.EventType attribute)

 	TABLET_TOOL_TIP (libinput.constant.EventType attribute)

 	TabletPadEvent (class in libinput.event)

 	TabletPadModeGroup (class in libinput.define)

 	TabletPadRingAxisSource (class in libinput.constant)

 	TabletPadStripAxisSource (class in libinput.constant)

 	TabletTool (class in libinput.define)

 	TabletToolEvent (class in libinput.event)

 	TabletToolProximityState (class in libinput.constant)

 	TabletToolTipState (class in libinput.constant)

 	TabletToolType (class in libinput.constant)

 	tap (libinput.device.DeviceConfig attribute)

 	TapButtonMap (class in libinput.constant)

 	
 	TapState (class in libinput.constant)

 	tilt_axes (libinput.event.TabletToolEvent attribute)

 	tilt_has_changed (libinput.event.TabletToolEvent attribute)

 	time (libinput.event.GestureEvent attribute)

 	(libinput.event.KeyboardEvent attribute)

 	(libinput.event.PointerEvent attribute)

 	(libinput.event.SwitchEvent attribute)

 	(libinput.event.TabletPadEvent attribute)

 	(libinput.event.TabletToolEvent attribute)

 	(libinput.event.TouchEvent attribute)

 	tip_state (libinput.event.TabletToolEvent attribute)

 	tool (libinput.event.TabletToolEvent attribute)

 	tool_id (libinput.define.TabletTool attribute)

 	TOUCH (libinput.constant.DeviceCapability attribute)

 	TOUCH_CANCEL (libinput.constant.EventType attribute)

 	TOUCH_DOWN (libinput.constant.EventType attribute)

 	TOUCH_FRAME (libinput.constant.EventType attribute)

 	TOUCH_MOTION (libinput.constant.EventType attribute)

 	TOUCH_UP (libinput.constant.EventType attribute)

 	TouchEvent (class in libinput.event)

 	transform_absolute_coords() (libinput.event.PointerEvent method)

 	transform_coords() (libinput.event.TabletToolEvent method)

 	(libinput.event.TouchEvent method)

 	type (libinput.define.TabletTool attribute)

 	(libinput.event.Event attribute)

U

 	
 	UDEV (libinput.constant.ContextType attribute)

 	udev_device (libinput.device.Device attribute)

 	UNKNOWN (libinput.constant.TabletPadRingAxisSource attribute)

 	(libinput.constant.TabletPadStripAxisSource attribute)

 	
 	UNSUPPORTED (libinput.constant.ConfigStatus attribute)

 	UP (libinput.constant.TabletToolTipState attribute)

W

 	
 	WHEEL (libinput.constant.PointerAxisSource attribute)

 	wheel_delta (libinput.event.TabletToolEvent attribute)

 	
 	wheel_delta_discrete (libinput.event.TabletToolEvent attribute)

 	wheel_has_changed (libinput.event.TabletToolEvent attribute)

 	WHEEL_TILT (libinput.constant.PointerAxisSource attribute)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Installation

 		
 Dependencies

 		
 pip

 		
 Source

 		
 Usage

 		
 Creating manual context

 		
 Creating udev context

 		
 Viewing device information

 		
 Getting/filtering events

 		
 Contexts

 		
 LibInput

 		
 LibInputPath

 		
 LibInputUdev

 		
 Events

 		
 Event

 		
 PointerEvent

 		
 KeyboardEvent

 		
 TouchEvent

 		
 GestureEvent

 		
 TabletToolEvent

 		
 TabletPadEvent

 		
 SwitchEvent

 		
 DeviceNotifyEvent

 		
 Devices and Seats

 		
 Device

 		
 Seat

 		
 DeviceConfig

 		
 Misc. objects

 		
 TabletTool

 		
 TabletPadModeGroup

 		
 Constants and Enumerations

_static/up.png

_static/up-pressed.png

